

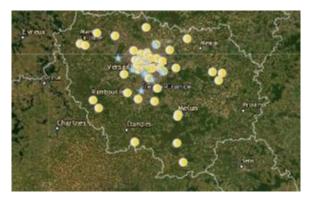
Air quality monitoring through sensor-based networks in large metropolitan areas: The case of Athens, Greece

Dr. Georgios Grivas

Research Fellow, National Observatory of Athens (IERSD/NOA)



Dense Air Quality Monitoring Networks in major European cities



No. of stations: \approx 120

No. of stations: \approx 50

No. of stations: \approx 70

No. of stations: \approx 50

A less dense Air Quality Monitoring Network in a major European City

Number of Sites Number of Sites

GREATER AREA OF ATHENS (GAA)

Population: 3.6 mil. (2019 – Eurostat)

Area: 412 km² (Athens Basin)

Regional Units: 8

Municipalities: 56

Population Range: 18-664k (by municipality)

Density Range: 0.1-21.2 k/km2 (by municipality)

Population of agglomeration or zone (thousands)	If maximum concentrations exceed the upper assessment threshold (1)	
	Pollutants except PM	PM (²) (sum of PM ₁₀ and PM _{2,5})
0-249	1	2
250-499	2	3
500-749	2	3
750-999	3	4
1 000-1 499	4	6
1 500-1 999	5	7
2 000-2 749	6	8
2 750-3 749	7	10
3 750-4 749	8	11
4 750-5 999	9	13
≥ 6 000	10	15

Local factors exacerbating common European AQ issues

Wintertime "smog" due to residential wood-burning

- Research studies feature Athens as the biomass-burning capital of the EU
- Extreme short-term levels for $PM_{2.5}$ (>200 μgm^{-3} , hourly), with high contributions of organic compounds and black carbon

© Summertime photochemical smog

- High ozone levels with frequent exceedances of alert and information thresholds
- The majority of urban background sites in the GAA each year breach the annual EU target-value

② Aging vehicle fleet – Surge of diesel-powered cars

- A ban on private diesel cars ended in 2011, and they have since dominated new and used-car sales
- Greece has one of the most aged vehicle fleets in the EU (4th most aged for private cars, 1st most aged for trucks)
- Persistent AQ-standard violations for NO_2 , PM_{10} at traffic sites

 Piraeus in the GAA is the busiest European passenger port and the 2nd most busy port in the Mediterranean

Episodic air quality events aggravate short-term exposure

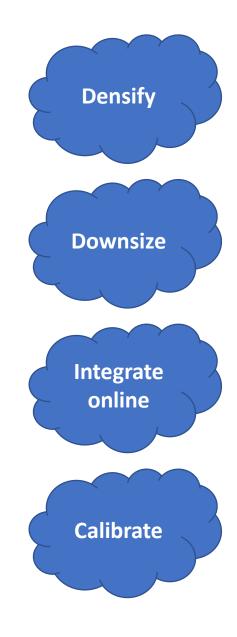
Wildfire smoke impacting the urban area

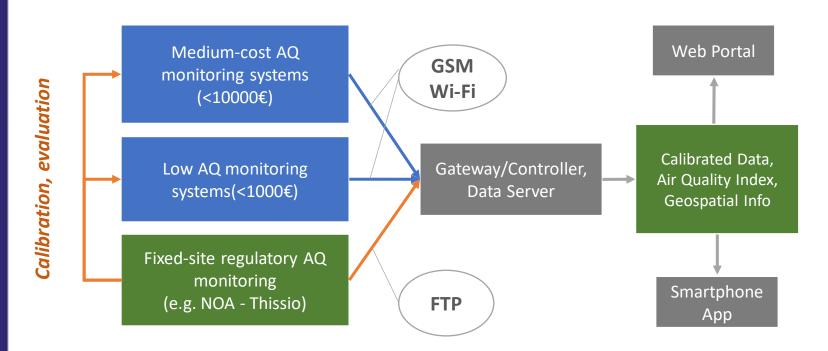
- The GAA has been affected by emissions from a wildfire event almost every summer since 2017
- The impact of the August 2021 wildfire lasted for over a week and led to extreme short-term $PM_{2.5}$ levels (>300 μgm^{-3})

© Industrial accidents emitting hazardous pollutants

- In the recent years (2016-2020), there have been two large scale industrial accidents in plastic-recycling plants of the GAA
- Atmospheric dispersion carried the plumes over the Athens basin, leading to excessive PM levels, characterized by high BC contribution

Q African dust intrusions


• Dust events due to Saharan dust transport are very common in Southern Greece, especially during spring, leading to extreme PM_{10} levels and also aggravating short-term $PM_{2.5}$ exposure

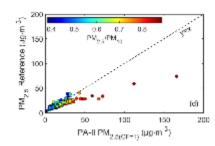

Identifying the special needs for AQ monitoring in metro areas

- Large exposed populations necessitate spatially representative measurements, to capture within-area variability and reduce exposure misclassification error
- Large areas mean that atmospheric dynamics can induce substantial intra-urban variability
- The heterogeneous urban landscape and source mixture dictate measurement at different site types
- Multiple stakeholders at different levels (governmental, regional, municipal, private sector) have different AQ management priorities and require solutions for local issues
- Large investments required to expand regulatory network
- Episodic events but also increased urban mobility call for near-real time information
- Need for IoT integration and personalized exposure information (online platforms, smartphone apps, etc.)
- While sensor-based solution will not substitute regulatory AQ monitoring stations for compliance assessment, it is imperative to calibrate their outputs for reliable results

Designing an integrated AQ monitoring network in Athens

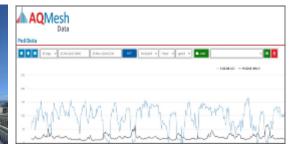
- Obesign and implementation of an integrated IoT network and data-visualization platform
- Products and services to inform and protect the public from excessive exposure
- Incorporation of other available monitoring networks providing calibrated data

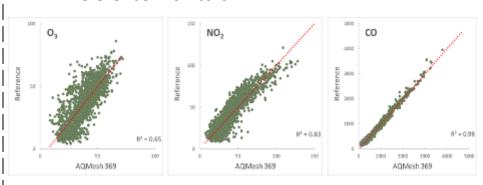
Sensor-based monitoring instruments used by NOA in Athens


Low-cost system for PM_{2.5} monitoring

PurpleAir PA-II (PMS5003)

- Low cost device, can be deployed in dense networks
- Easy to install and operate, transmits data via wi-fi to an online platform
- Real time monitoring (resolution ≈ 2 min)
- Strong correlations with PM_{2.5} reference monitors (except in cases of dust)



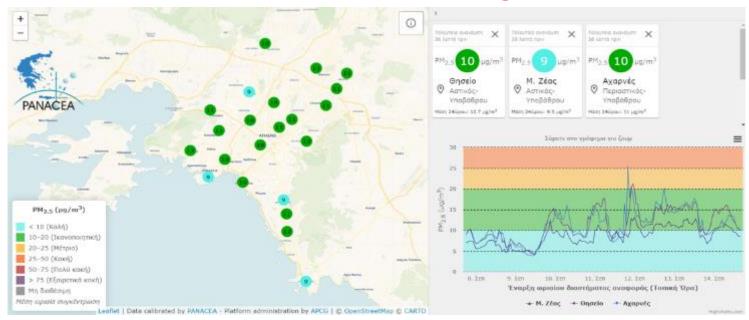

Multi-pollutant systems for O₃, NO₂, CO and PM

AQMesh Multi-pollutant monitor

- Alphasense electrochemical sensors for gas measurements, correcting for T interferences
- Integrated in a user platform for data access and parametrization (3G transmission, API)
- Real time monitoring (min. resolution = 5 min)
- Strong correlations with CO, NO₂ and O₃ reference monitors

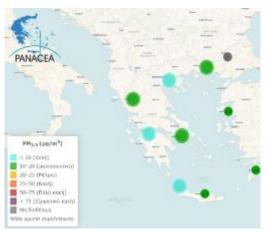
Calibration of sensor-based systems at the NOA supersite

- NOA urban background supersite in Thissio, central Athens
- Concurrent operation with reference instruments using standard methods
- Statistical evaluation of sensor performance
- Linear models for correction of sensor outputs
- Examination of T, RH effects and cross-pollutant interferences
- Periodic calibration of sensors on-site (using goldenpods or the NOA mobile AQ monitoring station)



The NOA/PANACEA PM_{2.5} monitoring network in Athens

https://air-quality.gr

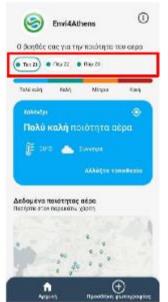

PM_{2.5} monitoring in the GAA using low-cost sensors

24 measurement sites in the GAA

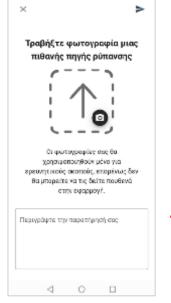

≈ 80 measurement sites in Greek cities (in the framework of RI-PANACEA, with the cooperation of Greek Universities, such as UPatras)

The NOA/EMISSION multi-pollutant monitoring network in Athens

https://emission-web.meteo.noa.gr


O₃, NO_x, CO, PM_x
measurements in the GAA,
using AQMesh and custom
made low-cost systems

15 measurement sites in the GAA



Envi4Athens (DRAXIS)

- Smartphone app for the EMISSION network
- Personalized AQI and info
 - Citizen engagement

An example: The August 2021 wildfire events

Start of event

Nearing the city

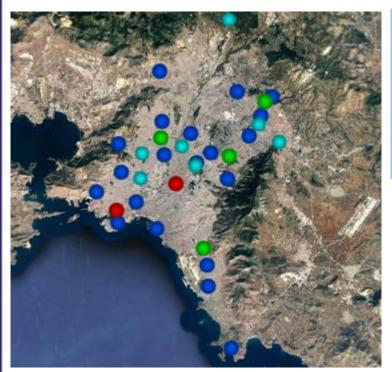
Covering the basin

The utility of a sensor-based network in the context of e-shape

Pilot: S2-P3: EO-based pollution-health risks profiling in the urban environment

<u>Target:</u> Blend EO platforms for AQ with socio-economic and health data, into an integrated risk assessment system to support decision making

Key tools:


- High-resolution, city-scale AQ modeling system (see upcoming presentation)
- Dynamic population exposure methodology
- Health impact assessment tools

Possibilities opened up with AQ monitoring in high resolution

- Improved validation and assimilation of the AQ modelling system
- Characterization of AQ at the municipality level
- Utilization of measurements in land-use regression models for spatial prediction of long-term exposure
- Provision of data for improved health impact assessment

The path to an integrated network of calibrated data

- Reference sites
- Mid-cost multi-pollutant systems
- Low-cost multi-pollutant systems
- Low-cost PM_{2.5} systems

Urban Traffic:

Urban Background: 15

Suburban Background: 13

Near-city Rural Background 2

PM_{2.5} network densification

Aim > Coverage at the municipality level

Thank you!!

ggrivas@noa.gr

