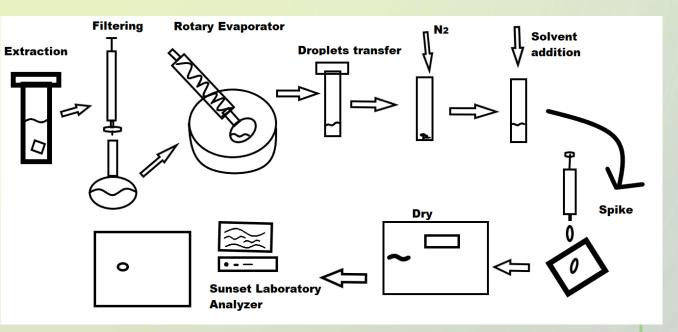


LIGHT ABSORPTION AND RADIATIVE EFFECTS OF WATER-SOLUBLE AND METHANOL-SOLUBLE BROWN CARBON UNDER HIGH RESIDENTIAL WOOD BURNING EMISSIONS

D.G. KASKAOUTIS^{1,2}, D. PARASKEVOPOULOU¹, G. GRIVAS¹, S. BIKKINA³, E. LIAKAKOU¹, A. BOUGIATIOTI¹, I. STAVROULAS¹, M. TSAGKARAKI², K. PAPOUTSIDAKI², K. OIKONOMOU⁴, M. GAVROUZOU⁵, N. HATZIANASTASSIOU⁵, J. SCIARE³, E. GERASOPOULOS¹, N. MIHALOPOULOS^{1,2}

¹Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Greece ²Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Greece, ³CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India ⁴Climate and Atmosphere Research Center, The Cyprus Institute, Cyprus ⁵Laboratory of Meteorology, Department of Physics, University of Ioannina, Greece

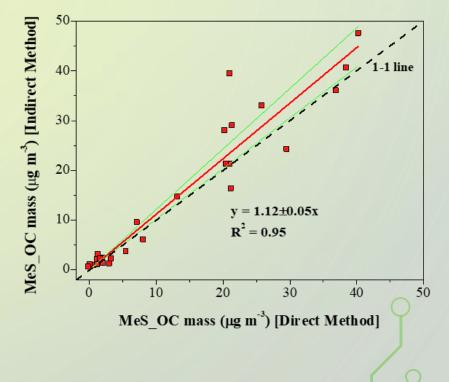
C



WATER, METHANOL SOLUBLE BROWN CARBON MEASUREMENTS IN IOANNINA

- Scope: Investigation of water, methanol soluble OC mass and related absorption characteristics. Estimates of radiative forcing of the WS_BrC, MeS_BrC relative to EC for the first time in Greece and southeastern Europe.
- Ioannina Campaigns: Summer 2019 (July-August), Winter 2019/20 (December-February)
- Chemical analysis of 24-hrs PM_{2.5} samples (OC/EC analyzer, Ion chromatography)
- WSOC mass concentrations were measured using a Shimadzu TOC-VCSH total OC analyzer
- Monosaccharide anhydrides (including levoglucosan and mannosan) were analyzed using High-Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD)
- Aethalometer AE-33 [BC_{ff}, BC_{wb}, spectral absorption, AAE]
- Meteorological parameters (temperature, RH, rainfall, wind speed, direction)

PROTOCOL FOR ESTIMATES OF METHANOL-SOLUBLE OC MASS


- For the quantification of MeS OC a relatively novel, direct procedure was followed.
- Punches from the PM_{2.5} filters were extracted in methanol
- → Extracts were filtered and evaporated in a Rotary Evaporator to a few drops
 → The residue was washed with methanol and concentrated to dryness under a gentle nitrogen stream
- →The remaining compounds were dissolved with methanol and transferred on unexposed filter punches
 - The filter punches were spiked with the methanol solutions, dried and then analyzed in the Sunset OC/EC Analyzer

COMPARISON BETWEEN DIRECT AND INDIRECT METHODS FOR MES_OC

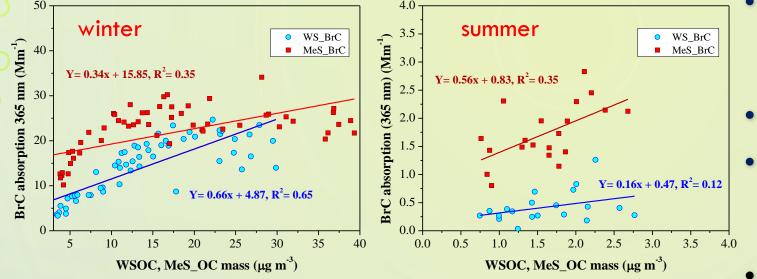
 The methanol soluble mass of OC was also calculated, through the *indirect procedure* that is frequently used in reported MeS_BrC studies

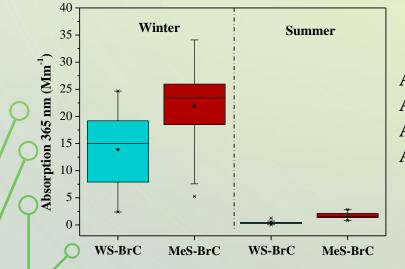
- Comparison was performed on a subset of 27 samples (summer and winter).
- Overestimation of the calculated MeS_OC mass with the indirect method (MeS_OC / OC: 74 % vs. 65 %)

LIGHT ABSORPTION ANALYSES IN FILTER EXTRACTS

- Measurements of light-absorbing BrC in water- and methanol- extracts by UV-Vis spectrophotometry.
- A 1 cm² punch was placed in 15 mL of ultrapure water and another punch in 15 mL of methanol.
- The extracted solutions were filtered and then introduced into a 1m long Liquid Waveguide Capillary Cell (LWCC).
- The LWCC was coupled to a UV-Visible spectrophotometer
- Absorptions were measured at 365 nm relative to 700 nm forWS_BrC and MeS_BrC.
- AbsWS/MeS BrC 365 (Mm⁻¹) = (A365 A700) * Vextr. * fdil * In(10) / (Vair * l
- All acquired values were blank corrected

ESTIMATES OF BRC RADIATIVE FORCING

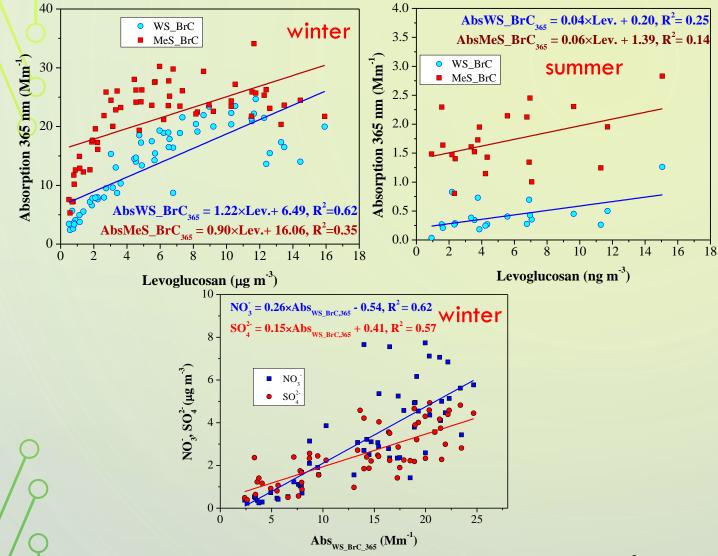

• The fractional radiative forcing of BrC (WS and MeS) relative to EC (RRF_{WS_BrC} , RRF_{MeS_BrC}), was estimated using the formulas (integrated in the wavelength band 300–2500 nm):


•
$$\frac{I_o - I}{I_o}$$
 (λ , BrC) = 1 - $e^{-(MAE_{(WS/MeS)}BrC)} * \left[\frac{\lambda_o}{\lambda}\right]^{AAE_{(WS/MeS)}BrC} * C_{(WS/MeS)OC} * BLH)$

•
$$\frac{I_o - I}{I_o} (\lambda, EC) = 1 - e^{-(MAE_{EC} * \left[\frac{\lambda_o}{\lambda}\right]^{AAE_{EC}} C_{EC} * BLH)}$$

- $\mathbf{RRF}_{\mathbf{BrC}} = \frac{\int_{300}^{2500} I_{o(\lambda)} \left[\frac{Io-I}{Io}(\lambda, \mathbf{BrC})\right] d\lambda}{\int_{300}^{2500} I_{o(\lambda)} \left[\frac{Io-I}{Io}(\lambda, \mathbf{EC})\right] d\lambda}$
- I_o(λ) is the solar emission flux (Wm⁻² nm⁻¹) for clear-sky conditions, obtained from the Air Mass 1 Global Horizontal (AM1GH) solar irradiance model (Levinson et al., 2010). The reference wavelengths (λ_o) were 365 nm for BrC (WS/MeS) and 658 nm for EC. AAE(WS/MeS)_BrC corresponds to the calculated AAE₃₆₅₋₅₉₀ values and AAE_{EC} was set to 1. C_{(WS/MeS)OC} and C_{EC}
 are the mass concentrations of extracted OC components and EC, respectively.

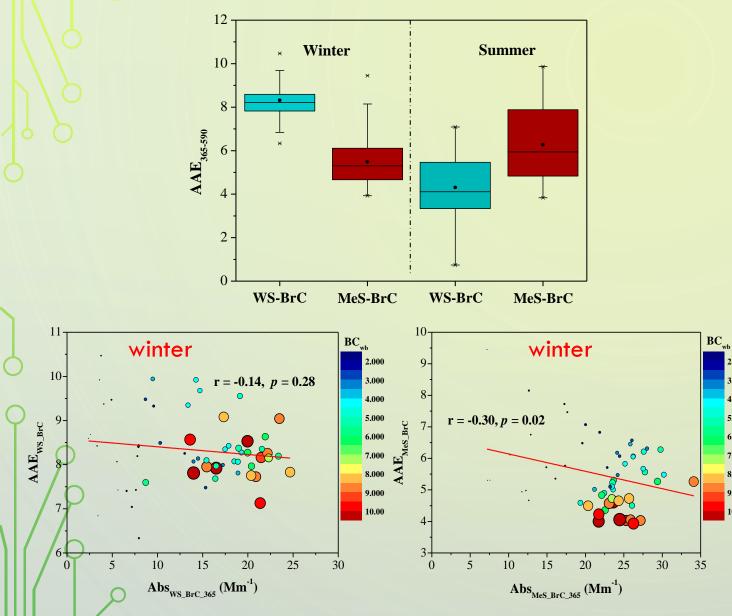
WS_OC, MES_OC MASS AND RELATED ABSORPTIONS



AbsWS_BrC: 13.9 ± 6.5 Mm⁻¹ (winter) AbsWS_BrC: 0.4 ± 0.3 Mm⁻¹ (summer) AbsMeS_BrC: 21.7 ± 9.1 Mm⁻¹ (winter) AbsMeS_BrC: 1.7 ± 0.5 Mm⁻¹ (summer)

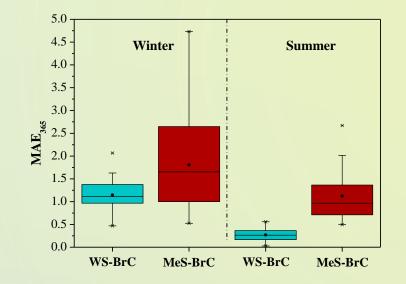
- The direct method resulted in a MeS_OC contribution of 68% and 71% to OC in winter and summer, respectively.
- WSOC/OC: 0.56 (winter), 0.64 (summer).
- The MeS_OC mean concentration was 17.6 μg m⁻³ in winter and 1.8 μg m⁻³ in summer.
- Significant correlations between WSOC, MeS_OC masses and absorptions.
- For intense BB conditions, the absorptions of water and methanol extracts remain mostly constant.
- Lower correlations in summer signaling photo-dissociation of BrC chromophores, no BB sources, possible biogenic emissions with low absorbance.

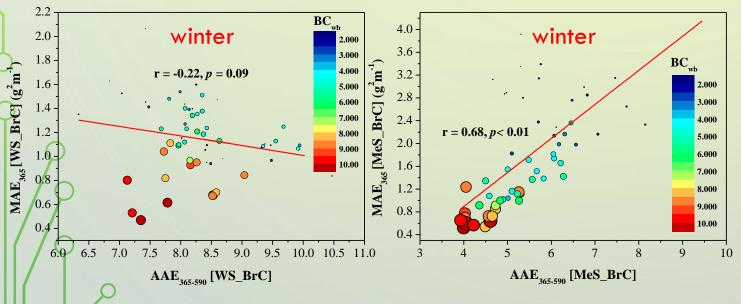
WS_OC, MES_OC MASS AND RELATED ABSORPTIONS



Significant correlations of WS_BrC absorption with NO₃⁻ ($R^2 = 0.62$) and SO₄²⁻ ($R^2 = 0.57$) in winter imply secondary formation of water-soluble light-absorbing compounds.

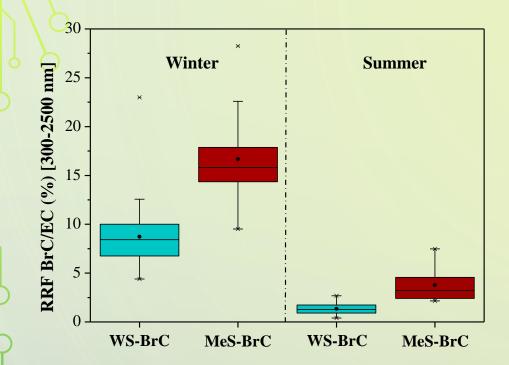
- Strong correlation between water and methanol BrC absorptions in winter (R² = 0.60).
- In winter, Abs_{WS_BrC_365} was strongly associated with levoglucosan (R² = 0.62), revealing RWB origin.
- MeS_BrC absorption exhibited a moderate association (R² = 0.35) with levoglucosan, which decreased considerably for levoglucosan concentrations above 6 μg m⁻³.
- For Lev.< 6 μg m⁻³, the correlations improved to R² = 0.89 for WS_BrC and R² = 0.80 for MeS_BrC.
- In summer substantial heterogeneity between the origin and fate of chromophores (R² = 0.14).


AAE FOR WATER AND METHANOL SOLUBLE EXTRACTS


5.000

- Winter AAE_{WS_BrC}: (6.3 to 10.5; mean of 8.3±0.8).
 Characteristic of BB conditions.
- Summer mean AAE_{WS_BrC}: 4.3±1.9. No BB-sources and (probably photo-bleaching of secondary WSOC.
- Winter AAE_{MeS_BrC}: 5.5±1.1. Lower compared to AAE_{WS_BrC}. It indicates larger absorbance by highmolecular weight chromophores from BB that absorb in the visible. These can be extracted more efficiently by methanol.
- Summer AAE_{MeS_BrC}: 6.3 ± 1.9. Slightly higher than that in
 winter. Larger variation shows more heterogeneity in
 sources.
- AAE_{MeS_BrC} were negatively related with MeS_BrC absorption, while lowest AAE are for highest BC_{wb}. This indicates that under high BB conditions, methanol extracts efficiently BrC chromophores at mid-visible spectrum.

MASS ABSORPTION EFFICIENCY (MAE)



- Winter MAE_{WS_BrC}: 1.15 ± 0.30 m² g⁻¹. In summer: 0.27 ± 0.14 m² g⁻¹ due to the photo-oxidation of BrC.
- Significantly higher mean MAE_{MeS_BrC} values in winter

 (1.81 ± 0.98 m² g⁻¹) and summer (1.12 ± 0.57 m² g⁻¹), for
 MeS_BrC. It indicates pronounced differences in the
 absorptivity between WSOC and WIOC, possibly driven by
 the inclusion of high-MW aromatics, found in both BB and
 fossil fuel combustion.
- MAE_{WS_BrC} vs AAE_{WS_BrC} (r = -0.22). This suggests that samples with higher absorbing efficiency at 365 nm generally exhibit a smoother decrease of absorption with wavelength.
- For methanol extracts, a positive correlation (R² = 0.46) was observed in winter. For peak BB conditions (BC_{wb} > 8 μg m⁻³), lowest AAE_{MeS_BrC} and MAE_{MeS_BrC} values were observed.

RADIATIVE FORCING OF WATER- AND METHANOL-SOLUBLE BRC

- RRF_{WS_BrC} of 8.7 ± 3.0% (range: 4.4%-14.9%) in winter (300–2500 nm). Higher RRF for the MeS_BrC (16.7 ± 3.7%).
- In summer, the photo-dissociation and volatilization of BrC chromophores drastically reduced the mean RRF_{WS_BrC} (1.4%) and RRF_{MeS_BrC} (3.8%) in 300–2500 nm.
- The winter/summer integrated ratios of absorbed solar radiation (300–2500 nm) were 2.1, 4.3 and 12.8 for EC, MeS_BrC and WS_BrC, respectively, highlighting the large impact of WS_BrC absorption under RWB conditions, especially in the UV.

RADIATIVE FORCING OF WATER- AND METHANOL-SOLUBLE BRC

- The solar radiation absorbed by EC, WS_BrC and MeS_BrC shows a large increase in RRF_{WS_BrC} and RRF_{MeS_BrC} at UV and near-visible wavelengths.
- At 365 nm, RRF_{WS_BrC} was estimated 39.2%, and 54.6% for RRF_{MeS_BrC}.
- The mean winter RRF_{WS_BrC} at short wavelengths (300–400 nm) was 48.5%, rising to 60.2% for RRF_{MeS_BrC}.
- In summer, mean RRF_{WS_BrC} (4.1%) and RRF_{MeS_BrC} (16.6%) in 300–400 nm.

The large BrC contributions in the UV, apart from the RF effect, may even modulate photochemistry.

THANK YOU

to manufacture and the

Ioannina, Greece